A Newton descent method for the determination of invariant tori

نویسندگان

  • Y. Lan
  • C. Chandre
  • P. Cvitanović
چکیده

We formulate a fictitious-time flow equation which drives an initial guess torus to a torus invariant under given dynamics, provided such torus exists. The method is general and applies in principle to continuous time flows and discrete time maps in arbitrary dimension, and to both Hamiltonian and dissipative systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems

In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...

متن کامل

Fast Numerical Algorithms for the Computation of Invariant Tori in Hamiltonian Systems

In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of invariant tori in Hamiltonian systems (exact symplectic maps and Hamiltonian vector fields). The algorithms are based on the parameterization method and follow closely the proof of the KAM theorem given in [LGJV05] and [FLS07]. They essentially consist in solving a functio...

متن کامل

Computation of Invariant Tori by Newton-Krylov Methods in Large-Scale Dissipative Systems

A method to compute invariant tori in high-dimensional systems, obtained as discretizations of PDEs, by continuation and Newton-Krylov methods is described. Invariant tori are found as fixed points of a generalized Poincaré map without increasing the dimension of the original system. Due to the dissipative nature of the systems considered, the convergence of the linear solvers is extremely fast...

متن کامل

On the convergence speed of artificial neural networks in‎ ‎the solving of linear ‎systems

‎Artificial neural networks have the advantages such as learning, ‎adaptation‎, ‎fault-tolerance‎, ‎parallelism and generalization‎. ‎This ‎paper is a scrutiny on the application of diverse learning methods‎ ‎in speed of convergence in neural networks‎. ‎For this aim‎, ‎first we ‎introduce a perceptron method based on artificial neural networks‎ ‎which has been applied for solving a non-singula...

متن کامل

Invariant Tori through Direct Solution of the Hamilton-jacobi Equation*

We explore a method to compute invariant tori in phase space for classical non-integrable Hamiltonian systems. The procedure is to solve the HamiltonJacobi equation stated as a system of equations for Fourier coefficients of the generating function. The system is truncated to a finite number of Fourier modes and solved numerically by Newton’s method. The resulting canonical transformation serve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006